It is now "Under Review". Needed a couple of days after it went to "With Editor"
2022年3月14日月曜日
2022年3月11日金曜日
update on my article
After two weeks of the submission, finally my article is "with editor".
I have thought it would go directly to "under review".
2022年3月9日水曜日
A new paper, but "submitted to Journal" for over a week
A new paper was submitted on 25th of Feb., but still "submitted to journal". nearly two weeks.
hope an editor is handling my manuscript, but no reviewer is assigned yet.
It was submitted to International Journal of Computational Methods
2022年3月7日月曜日
House Price@Kaggle with TensorFlow
Because I completed a Coursera tensorflow course, I tried a Kaggle quiz.
Probably there is a lot of room to tune, but at least this code works.
I know this is super awkward, but at the same time, this may help someone.
import pandas as pd
import numpy as np
import tensorflow as tf
FEATURES = []
FEAT_CONT=["LotFrontage", "LotArea", "OverallQual", "OverallCond", "YearBuilt", "YearRemodAdd", "MasVnrArea", "TotalBsmtSF",
"1stFlrSF", "2ndFlrSF", "LowQualFinSF", "GrLivArea", "BsmtFullBath", "BsmtHalfBath", "FullBath", "HalfBath",
"TotRmsAbvGrd", "Fireplaces", "GarageYrBlt", "GarageCars", "GarageArea", "WoodDeckSF", "OpenPorchSF", "EnclosedPorch", "3SsnPorch",
"ScreenPorch", "PoolArea", "MiscVal"]
FEAT_CAT = [ "MSSubClass", "MSZoning", "Street", "Alley", "LotShape", "LandContour", "Utilities", "LotConfig", "LandSlope", "Neighborhood",
"Condition1", "Condition2", "BldgType", "HouseStyle", "RoofStyle", "RoofMatl", "Exterior1st", "Exterior2nd",
"MasVnrType", "ExterQual", "ExterCond", "Foundation", "Heating", "HeatingQC", "CentralAir", "Electrical", "KitchenQual", "Functional",
"FireplaceQu", "GarageType", "GarageFinish", "GarageQual", "GarageCond", "PavedDrive", "PoolQC", "Fence", "MiscFeature",
"SaleType", "SaleCondition"]
def get_input_fn(data_set, num_epochs=None, shuffle=True):
return tf.compat.v1.estimator.inputs.pandas_input_fn(
x=pd.DataFrame({k: data_set[k].values for k in FEATURES}),
y=pd.Series(data_set["SalePrice"].values),
num_epochs=num_epochs,
shuffle=shuffle)
prediction_set = pd.read_csv("test.csv")
prediction_set.dropna(how='all', axis=1,inplace=True)
prediction_set.fillna(0,inplace = True)
prediction_set = prediction_set.drop(["Id"],axis=1)
prediction_set["SalePrice"]=0.0
for i in FEAT_CAT:
prediction_set[i][prediction_set[i]==0]="0"
training_set = pd.read_csv("train.csv")
training_set.dropna(how='all', axis=1,inplace=True)
training_set.fillna(0,inplace = True)
training_set = training_set.drop(["Id"],axis=1)
for i in FEAT_CAT:
training_set[i][training_set[i]==0]="0"
test_set = training_set.iloc[1400:,:]
training_set = training_set.iloc[:1400,:]
FEATURES = FEAT_CONT + FEAT_CAT
feature_cols = [tf.feature_column.numeric_column(k) for k in FEAT_CONT]
feature_cat = []
for i in FEAT_CAT:
data = training_set[i].values.tolist()
data = set(data)
feature_cat.append(tf.feature_column.embedding_column(tf.feature_column.categorical_column_with_vocabulary_list(key=i,vocabulary_list=tuple(data)),16 ))
numN = len(FEATURES)
regressor = tf.estimator.DNNRegressor(feature_columns=feature_cols, hidden_units=[300,150,75,30], model_dir=None)
regressor.train(input_fn=get_input_fn(training_set), steps=5000)
ev = regressor.evaluate(input_fn=get_input_fn(test_set, num_epochs=1, shuffle=False))
loss_score = ev["loss"]
print("Loss: {0:f}".format(loss_score))
y = regressor.predict(input_fn=get_input_fn(test_set, num_epochs=1, shuffle=False))
pred = []
for i in y:
pred.append((i["predictions"][0]))
test_result = test_set["SalePrice"].values.tolist()
for i in range(len(pred)):
print(i,pred[i],test_result[i])
y = regressor.predict(input_fn=get_input_fn(prediction_set, num_epochs=1, shuffle=False))
pred = []
for i in y:
pred.append((i["predictions"][0]))
id = 1460
with open("output.csv","w") as f:
for i in range(len(pred)):
line = str(id+i+1)+","+str(pred[i]) +"\n"
f.write(line)
登録:
投稿 (Atom)